1. Parallelogram FGHJ was translated 3 units down to form parallelogram $F$ ' $G^{\prime} H^{\prime} \mathrm{J}^{\prime}$. Parallelogram $F$ 'G'H'J ' was then rotated $90^{\circ}$ counterclockwise about point G' to obtain parallelogram F 'G'H'J '".


Which statement is true about parallelogram FGHJ and parallelogram F ' $\mathrm{G}^{\prime \prime} \mathrm{H}^{\prime}$ 'J '?
a) The figures are both similar and congruent.
b) The figures are neither similar nor congruent.
c) The figures are similar but not congruent.
d) The figures are congruent but not similar.
2. Consider the triangles shown.


Which can be used to prove the triangles congruent?
a) SSS
b) ASA
c) SAS
d) AAS
3. In this diagram, $\overline{D E} \cong \overline{J I}$ and $\angle D \cong \angle J$.

B

a) $\overline{E F} \cong \overline{I H}$
b) $\overline{D H} \cong \overline{J F}$
c) $\overline{H G} \cong \overline{G I}$
d) $\overline{H F} \cong \overline{J F}$

Unit 1 Triangle Theorems, Congruence \& Proofs Review

## Solutions

4. Which set of relationships is sufficient to prove that the triangles in this figure are congruent?
a) $\overline{P R} \cong \overline{S U}, \overline{P Q} \cong \overline{S T}, \angle Q \cong \angle U$
b) $\overline{P Q} \cong \overline{P R}, \overline{S T} \cong \overline{S U}, \overline{R Q} \cong \overline{T U}$

> C

c) $\overline{\mathrm{RQ}} \cong \overline{\mathrm{TU}}, \angle \mathrm{R} \cong \angle \mathrm{U}, \angle \mathrm{P} \cong \angle \mathrm{S}$
d) $\angle \mathrm{P} \cong \angle \mathrm{S}, \angle \mathrm{R} \cong \angle \mathrm{U}, \angle \mathrm{Q} \cong \angle \mathrm{T}$
5. In this diagram, STU is an isosceles triangle where $\overline{S T}$ is congruent to $\overline{U T}$. The paragraph proof shows that $\angle S$ is congruent to $\angle U$.


It is given that $\overline{S T}$ is congruent to $\overline{U T}$. Draw $\overline{T V}$ that bisects $\angle T$. By the definition of an angle bisector, $\angle S T V$ is congruent to $\angle U T V$. By the Reflexive Property, $\overline{T V}$ is congruent to $\overline{T V}$. VSTV is congruent to VUTV by SAS. $\angle S$ is congruent to $\angle U$ by
a) CPCTC
b) Reflexive Property of $\cong$
c) Def. of Right angles
d) $\angle$ Congruence Postulate
6. In this diagram, $\overline{C D}$ is the perpendicular bisector of $\overline{A B}$. The two-column proof shows that $\overline{A C}$ is congruent to $\overline{B C}$.


| Step | Statement | Justification |
| :---: | :--- | :--- |
| 1 | $\overline{C D}$ is the perpendicular bisector of $\overline{A B}$ | Given |
| 2 | $\overline{A D} \cong \overline{B D}$ | Definition of bisector |
| 3 | $\overline{C D} \cong \overline{C D}$ | Reflexive Property of Congruence |
| 4 | $\angle A D C$ and $\angle B D C$ are right angles | Definition of perpendicular lines |
| 5 | $\angle A D C \cong \angle B D C$ | All right angles are congruent |
| 6 | $\triangle A D C \cong \triangle B D C$ | $?$ |
| 7 | $\overline{A C} \cong \overline{B C}$ | CPCTC |

Which theorem would justify step 6?
C
a) AAS
b) ASA
c) SAS
d) SSS

Unit 1 Triangle Theorems, Congruence \& Proofs Review

## Solutions

7. Use this diagram of a kite to answer the question.

Which statement can be proved by using the HL postulate?
a) $\triangle \mathrm{PQR} \cong \triangle \mathrm{PSR}$

b) $\Delta \mathrm{PTS} \cong \Delta T S R$
c) $\Delta \mathrm{QPS} \cong \Delta S R Q$
d) $\Delta$ QTP $\cong \Delta Q T R$
8. In this figure, Gabrielle wants to prove that $\square J L M \cong \square M L$. She knows that $\overline{J M} \cong \overline{K L}$.

A


What additional information will allow Gabrielle to complete the proof?
a) $\overline{J L} \cong \overline{K M}$
b) $\overline{M L} \cong \overline{K M}$
c) $\overline{J H} \cong \overline{H K}$
d) $\overline{M H} \cong \overline{L H}$
9. Use this diagram to answer the question.


What is the measure of $\angle Q P R$ ?
a) $15^{\circ}$
b) $60^{\circ}$
c) $120^{\circ}$
d) $175^{\circ}$
10. Which pair of triangles could be proved congruent?

C

b)



d)

Unit 1 Triangle Theorems, Congruence \& Proofs Review
Solutions
11. This figure shows quadrilateral JKLM.


What information will NOT be used to prove that JKLM is a parallelogram?
a) Show that $<\mathrm{JLM} \cong<\mathrm{LJK}$
b) Show that $\overline{J K} \cong \overline{L M}$
c) Show that $\Delta \mathrm{JKL} \cong \Delta \mathrm{LMJ}$

D
d) Show that $\triangle \mathrm{JKL} \cong \Delta \mathrm{JLM}$
12. Which transformation of $\Delta$ HIJ does NOT result in a congruent triangle
a) A reflection across the $x$-axis, followed by a rotation of $180^{\circ}$ about the origin $\qquad$
b) A rotation by $180^{\circ}$ about the origin, followed by a translation of 2 units left and 3 units down
c) A translation of 1 unit right and 2 units up, followed by a dilation by a factor of 3
d) A dilation by a factor of 2 , followed by a dilation by a factor of 0.5
13. Use this triangle to answer the question


This is a proof of the Pythagorean Theorem

|  | Step | Justification |
| :--- | :--- | :--- |
| 1 | $\triangle P Q R-\triangle R P S \sim \triangle Q S R$ | AA postulate |
| 2 | $\frac{P Q}{Q R}=\frac{Q R}{S Q}$ and $\frac{P Q}{P R}=\frac{P R}{P S}$ | Conresponding sides <br> of simmiar tiangles <br> are congruent |
| 3 | $Q R^{2}=P Q \cdot S Q$ and <br> $P R^{2}=P Q \cdot P S$ | Mutriplication <br> property of equality |
| 4 | $Q R^{2}+P R^{2}=$ <br> $P Q \cdot S Q+P Q \cdot P S$ | Addition property |
| 5 | $Q R^{2}+P R^{2}=$ <br> $P Q(S Q+P S)$ | Distribative <br> property |
| 6 | $\left.Q R^{2}+P R^{2}=P Q P Q\right)$ | Segment addition <br> postalate |
| 7 | $Q R^{2}+P R^{2}=P Q^{2}$ | Simplify |

In which step is there a mistake in the proof?
a) Step 1
b) Step 2
c) Step 4

B
d) Step 6

Unit 1 Triangle Theorems, Congruence \& Proofs Review

## Solutions

14. Given triangle ABC , which expression BEST represents the sum ot the interior angles?
a) $3 x$
b) $2 x^{2}$
c) $x^{3}$

> A

d) $2 x^{2}$ x
15. In the figure below, BC bisects $<\mathrm{ABD}$, and $\mathrm{A}, \mathrm{B}$, and E are all points on line l .

Which angles must be congruent?
a) $\angle \mathrm{ABC}$ and $<\mathrm{CBD}$
b) $\angle \mathrm{ABC}$ and $\angle \mathrm{CBE}$
c) $\angle \mathrm{ABD}$ and $\angle \mathrm{DBE}$

d) $<\mathrm{CBD}$ and $<\mathrm{ABD}$
16. On $P Q, R$ is between $P$ and $Q$. Point $X$ does not lie on $P Q$ and $X R$ is not perpendicular to $P Q$.

Which of the following describes <XRQ and <XRP?
a) Complementary angles
b) Congruent angles
c) Supplementary angles
d) Vertical angles

17. In the figure below, $l$ is parallel to $m$. Which of the following are corresponding angles?
a) $<1$ and $<2$
b) $<1$ and $<3$
c) $<2$ and $<3$
d) $<3$ and $<4$

18. In the figure below, $l$ is parallel to $m$. If $R S=S T$, what is the measure of $<R X Y$ ?
a) $30^{\circ}$
b) $45^{\circ}$

c) $60^{\circ}$
d) $90^{\circ}$

Unit 1 Triangle Theorems, Congruence \& Proofs Review

## Solutions

19. Which statement about a parallelogram must be true?
a) All of its sides are the same length.
b) Its diagonals are the same length.
c) Its opposite angles have the same measure.
d) At least one angle is a right angle.
20. An open area at a local high school is in the shape of a quadrilateral. Two sidewalks crisscross this open area as diagonals of the quadrilateral. If the walkways cross at their midpoints and the walkways are equal in length, what is the shape of the open area?
a) A parallelogram
b) A rhombus

C
c) A rectangle
d) A trapezoid
21. Which set of information is NOT enough to prove that $\triangle \mathrm{ABC}$ is congruent to $\triangle \mathrm{DEF}$ ?
a) $\angle \mathrm{A} \cong \angle \mathrm{D},<\mathrm{C} \cong \angle \mathrm{F}$, and $\overline{B C} \cong \overline{E F}$
b) $\overline{A B} \cong \overline{D E}, \overline{B C} \cong \overline{E F}$, and $<\mathrm{B} \cong<\mathrm{E}$
c) $<\mathrm{A} \cong<\mathrm{D},<\mathrm{C} \cong<\mathrm{F}$, and $\overline{A C} \cong \overline{D F}$
d) $<\mathrm{A} \cong<\mathrm{D}, \overline{A C} \cong \overline{D F}$, and $\overline{B C} \cong \overline{E F}$
22. A transversal crosses two parallel lines. Which statement should be used to prove that the measures of angles 1 and 5 sum to $180^{\circ}$ ?

a) Angles 1 and 8 are congruent as corresponding angles; angles 5 and 8 form a linear pair.
b) Angles 1 and 2 form a linear pair; angles 3 and 4 form a linear pair.
c) Angles 5 and 7 are congruent as vertical angles; angles 6 and 8 are congruent as vertical angles.
d) Angles 1 and 3 are congruent as vertical angles; angles 7 and 8 form a linear pair.
23. Which postulate or theorem can be used to determine the two triangles are congruent?
a) ASA Congruence Postulate
b) SSS Congruence Postulate

c) AAS Congruence Theorem
d) SAS Congruence Postulate


Unit 1 Triangle Theorems, Congruence \& Proofs Review

## Solutions

24. Which statement would be used to help find the missing value?

a) Opposite sides of a parallelogram are supplementary.
b) Opposite sides of a parallelogram are congruent.
c) Opposite angles of a parallelogram are supplementary.
d) Opposite angles of a parallelogram are congruent.
25. In the diagram of quadrilateral RSTU, RS || UT, $<\mathrm{RSU} \cong<$ TUS, and diagonal $\overline{S U}$ is drawn


Which method can be used to prove $\Delta \mathrm{RSU}$ is congruent to $\Delta \mathrm{TUS}$ ?
a) AAS
b) SSA
c) ASA
d) SAS

26. Find the value of $x$ in the diagram below
a) $x=57$
b) $x=45$
c) $x=50$
d) $x=8$

27. Find the value of $x$.
a) $x=12.2$
b) $x=32$
c) $x=10$
d) $x=16.8$


Unit 1 Triangle Theorems, Congruence \& Proofs Review

## Solutions

28. What are the different ways you can use to prove a shape is a parallelogram?

Quadrilateral with both pairs of opposite sides parallel.
Opposite sides congruent.
Opposite angles congruent.
Consecutive angles supplementary.
Diagonals bisect each other.
29. If $\overline{F H}$ is a perpendicular bisector of $\overline{I G}$, what can we use to prove that $\overline{F I}$ is congruent to $\overline{F G}$


I
G
H
a) SAS Postulate
b) Triangle Sum Theorem
c) SSS Postulate
d) Vertical angles theorem
30. Given the statement $\Delta \mathrm{QRS} \cong \triangle W X Y$, which statement must be true
a) $<$ S $\cong<X$
b) $<Q \cong<W$
c) $Q S \cong W X$
d) $\mathrm{SR} \cong X Y$
31. Find the value of $x$.

32. Find x .


1. In the diagram of $\triangle L M N$ and $\triangle N O P$ below, $\overline{L P}$ and $\overline{M O}$ intersect at $N$, and $\angle N L M \cong \angle N P O$.


$$
\begin{aligned}
& <\mathrm{NLM} \cong<\mathrm{NPO} \text { (Given) } \\
& <\mathrm{LNM} \cong<\mathrm{PNO} \\
& <\mathrm{LMN} \cong<\mathrm{PON}
\end{aligned}
$$

Which angles are congruent?
2. Given $\triangle A B C \sim \triangle D E F$ such that $\frac{A B}{D E}=\frac{5}{3}$, which statement is not true?
a. $\frac{B C}{E F}=\frac{5}{3}$
b. $\frac{A C}{D F}=\frac{5}{3}$
c. $\angle \mathrm{B} \cong \angle \mathrm{E}$
d. $\frac{m \angle A}{m \angle D}=\frac{5}{3}$
3. If $\triangle A B C \sim \triangle Z X Y, m \angle B=65$, and $m \angle C=35$, what is $m \angle Z$ ?
4. As shown in the diagram below, $\triangle A B C \sim \triangle D E F, A B=16, B C=6, D E=8$, and $E F=x$. What is the length of $\overline{E F}$ ?


5. In the diagram below of $\triangle P R T, \mathrm{Q}$ is a point on $\overline{P R}, \mathrm{~S}$ is a point on $\overline{T R}, \overline{Q S}$ is drawn, and $\angle R T P \cong \angle R Q S$.

6. Are these two triangles similar and if so, why?


The triangles are not similar as the angles are not congruent
7. The triangles below are similar. Write the similarity statement and determine the value of $x$.


$$
\begin{gathered}
\triangle D E F \sim \triangle B C A \\
\mathrm{x}=10.5
\end{gathered}
$$

Unit 1 Similarity Review
8. Determine the scale factor for the dilation below. Determine whether the dilation is an enlargement or reduction.


```
Reduction
Scale Factor = 1/2
```

9. Determine if the triangles in the figure are similar. If they are, what theorem proves their similarity?

10. Determine if the triangles shown in the figure are similar. If they are similar, describe their similarity (which theorem proves).

The triangles are not similar as the sides are not the same proportion
11. Determine $m \angle 1, m \angle 2, m \angle 3$.


$$
\begin{aligned}
& \mathrm{m}<1=58^{\circ} \\
& \mathrm{m}<2=88^{\circ}
\end{aligned}
$$

12. In the following figure, $\triangle A B C \sim \triangle L B M$. Find the value of x .

13. What two things have to be true for two triangles to be similar?

All corresponding angles are congruent
All corresponding sides are proportional (same ratios)
14. In the diagram below, the length of the legs $\overline{A C}$ and $\overline{B C}$ of right triangle $A B C$ are 5 cm and 12 cm , respectively. Altitude $\overline{C D}$ is drawn to the hypotenuse of $\triangle A B C$.

What is the length of $\overline{A D}$ to the nearest tenth of a centimeter?


$$
x=1.9 ?
$$

15. The side lengths of $\triangle A B C$ are 5,6 , and 9 and the sides of $\triangle X Y Z$ are 15,18 , and 27 respectively. Are the two triangles similar and if so, which postulate or theorem can be used to prove the triangles similar?

The triangles are not similar as the sides are not the same proportion
16. If $\Delta L M N \sim \Delta F I G$, find the value of x .

17. Solve for x: $\triangle A B C \sim \triangle X Y Z$

18. The following two triangles are similar. Solve for x .


$$
x=6
$$

19. A line parallel to a triangle's side splits into lengths of 16 and 4. The other side is split into lengths of 20 and $x$. What is the value of $x$ that would prove that the parallel line divides the sides proportionally?

20. Dilate the triangle using a scale factor of 1.5 and a center of $(0,0)$. Name the dilated triangle A'B'C'.

| $A^{\prime}(0,1.5)$ |
| :--- |
| $B^{\prime}(-4.5,4.5)$ |
| $C^{\prime}(1.5,4.5)$ |


21. Line segment $C D$ is 5 inches long. If line segment $C D$ is dilated to form line segment $C$ ' $D$ ' with a scale factor of 0.6 , what is the length of line segment C ' D '?

$$
C^{\prime} D^{\prime}=3
$$

22. Figure $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ is a dilation of figure $A B C D$.

a) Determine the center of dilation.
b) Determine the scale factor of the dilation. $\square$
23. Figure $A^{\prime} B^{\prime} C^{\prime} D^{\prime} F^{\prime}$ is a dilation of figure $A B C D F$ by a scale factor of $1 / 2$.

The dilation is centered at $(-4,-1)$.


Which statement is true?
a) $\frac{A B}{A^{\prime} B^{\prime}}=\frac{B^{\prime} C^{\prime}}{B C}$
b) $\frac{A B}{A^{\prime} B^{\prime}}=\frac{B C}{B^{\prime} C^{\prime}}$
c) $\frac{A B}{A^{\prime} B^{\prime}}=\frac{B C}{D^{\prime} F^{\prime}}$
d) $\frac{A B}{A^{\prime} B^{\prime}}=\frac{D F}{B^{\prime} C^{\prime}}$
24. Which transformation results in a figure that is similar to the original figure but has a greater area?
a) a dilation of $\triangle Q R S$ by a scale factor of 0.25
b) a dilation of $\triangle Q R S$ by a scale factor of 0.5
c) a dilation of $\triangle Q R S$ by a scale factor of 1

D
d) a dilation of $\Delta Q R S$ by a scale factor of 2
25. In the coordinate plane, segment $P Q$ is the result of a dilation of segment $X Y$ by a scale factor of $1 / 2$.


Which point is the center of dilation?
a) $(-4,0)$
b) $(0,-4)$
c) $(0,4)$
d) $(4,0)$
26. In the triangles shown, $\triangle \mathrm{ABC}$ is dilated by a factor of $2 / 3$ to form $\Delta \mathrm{XYZ}$.

Given that $m \angle A=50^{\circ}$ and $m \angle B=100^{\circ}$, what is the $m \angle Z$ ?


C
27. In the triangle shown $\overline{G H} \| \overline{D F}$.


What is the length of $\overline{G E}$
a) 2.0
b) 4.5
c) 7.5
d) 8.0

1. Alan is flying an airplane at an altitude of 5300 feet. He sees his house on the ground at a $45^{\circ}$ angle of depression.


What is Alan's horizontal distance from his house at this point?

## 5300 ft .

2. Karen is standing on a street in New York City looking at the top of the Empire State Building with a $30^{\circ}$ angle of elevation. She is 713.5 meters from the Empire State Building.


How tall is the Empire State Building? (round to the tenths place)

3. A right triangle (shown below) has a hypotenuse with a length of 15 inches and a leg with a length of 9 inches. Find the measure of angle B (round to the tenths place).


$$
\mathrm{x}=53.1^{\circ}
$$

4. What is the $\cos B$ ? $\frac{9}{17}$
5. What is the $\sin B ? \frac{12}{17}$
6. What is the $\tan \mathrm{A} ? \frac{3}{4}$
7. The legs of the isosceles triangle each measure 9 inches. Find the length of the hypotenuse.


9 in.
8. In the following triangle, $a=5 \sqrt{3}$ what is the value of b ?

9. In the following triangle, what is the value of $x$ ?


$$
\frac{13 \sqrt{2}}{2} \text { or } 9.2 \mathrm{~cm} .
$$

10. The following drawing shows the plan for big hill on a new roller coaster at an amusement park.


Find the estimated measure of the Goliath Ramp. Round to the tenths place.
11. In the following figure, if $\tan x=\frac{6}{8}$, what are $\sin x$ and $\cos x$

$\sin x=\frac{3}{5}$
$\cos x=\frac{4}{5}$
12. In the following figure $\cos \mathrm{P}=0.5$, what is the length of $\overline{P N}$ ?

$$
\overline{P N}=56
$$


13. In the following diagram, $m \angle B=56^{\circ}$ and $A B=21$ feet. Write an equation that can be used to find the value of x ?

$$
x=21(\operatorname{Sin} 56)
$$


14. A 17-foot slide is attached to a swing set. The slide makes a $53^{\circ}$ angle with the swing set.


Which answer most closely represents the height of the top of the slide?
$15 . \angle J$ and $\angle K$ are complementary angles in a right triangle. The value of $\tan \mathrm{J}$ is $12 / 5$. What is the value of $\sin \mathrm{K}$ ?
16. $\angle X$ and $\angle Y$ are complementary angles in a right triangle. The value of $\cos X=6 / 10$. Find $\sin X$, $\cos \mathrm{Y}$, and $\tan \mathrm{Y}$.

$$
\begin{aligned}
& \sin \mathrm{X}=\frac{4}{5} \\
& \cos \mathrm{Y}=\frac{4}{5} \\
& \tan \mathrm{Y}=\frac{3}{4}
\end{aligned}
$$

17. The diagonal of the square is 10 centimeters. Find the length of the sides of the square.

$$
5 \sqrt{2} \text { or } \approx 7.1 \mathrm{in} .
$$


18. If the value of $\cos 65^{\circ}=0.42$, then the $\sin \ldots \ldots=0.42$ ?

19. What measure is equivalent to $\cos \mathrm{A}$ ?
20. A broadcast antenna is situated on top of a tower. The signal travels from the antenna to your house so you can watch TV. The angle of elevation from your house to the tower measures $30^{\circ}$ and the distance from your house to the tower is 350 feet. Find the height of the tower. (Round to the nearest $10^{\text {th }}$ ).
202.1 ft .
21. An 8 foot ladder is leaning against a wall so that the base is 5 feet from the base of the wall. What angle does the ladder make with the ground? Round to the nearest tenth.

```
51.3
```

22. A surveyor is standing 25 feet from a building and is looking at the top with an angle of elevation of $65^{\circ}$. How tall is the building? Round to the nearest tenth.
53.6 ft .
23. Bob is looking at a helicopter that is flying 1,000 feet above the ground. Bob is 1,500 feet from the helicopter. At what angle of elevation is Bob looking at the helicopter? Round to the nearest tenth.

$$
33.7 \mathrm{ft} .
$$

24. A kite is being flown using 150 yards of string. The kite has an angle of elevation with the ground of 65 degrees. How high above the ground is the kite?

$$
135.9 \text { yd. }
$$

25. A 5.5 foot person standing 20 feet from a street light casts a 12 foot shadow. What is the height of the streetlight?
14.7 ft .
26. Find the area.

27. $\triangle \mathrm{ABC}$ is a right triangle. One of the acute angles has a cosine of $1 / 2$. What is the sine of that same angle? What is the sine of its complement?

Sin of the angle $\approx 0.015$
Sin of the complement $=\frac{1}{2}$
28. Lenny is planning to cut down a pine tree, and he wants to make sure that the tree will not hit his truck when it falls. The tree casts a shadow that is 150 feet long, and the angle of elevation from the base of the shadow to the top of the tree is $50^{\circ}$
a) How tall is the tree?
178.8 ft .
b) If Lenny parked his truck 90 feet away from the base of the tree, should he move his truck?

> Yes, as when it falls it will hit his truck
29. A 5.5 foot person standing 10 feet from a street light casts a 14 foot shadow. What is the height of the streetlight?

30. Find the perimeter of trapezoid $A B C D$


